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Abstract 

Four-dimensional string models arising in the asymmetric 23 orbifold com- 

pa&Cations of the beterotic string are studied. I present a mechanism for su- 

persymmetry breaking that gives rise to chiial modeIs in four dimensions, and 

discuss some typical models. A formalism for calculating one-loop partition 

functions in Z3 models is developed. One partition function may correspond 

to a non-supersymmetric, tachyon-free theory, with a vanishing cosmological 

constant as a consequence of Atkin-Lehner symmetry. 
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1. Introduction 

Recently there has been much interest in constructing four-dimensional heterotic 

superstring [l] theories. The formalism of four-dimensional strings [2,3,4] is well 

understood, although none of these theories has yet emerged as a leading candidate 

for the theory unifying gravity with strong and electro-weak interactions. 

The absence of low-energy supersymmetry is one important experimental fact 

that must be incorporated in constructing four-dimensional models. When super- 

symmetry is broken at scales not too far beyond the present experimental bounds, 

what enters is the zero-slope limit of superstring theories, so field-theoretical mech- 

anisms for supersymmetry breaking are appropriate. If supersymmetry is broken 

at scales comparable to the Planck scale, the problem of supersymmetry break- 

ing must be considered within the string framework, by the construction of non- 

supersymmetric string theories. In this paper the second possibility is considered. 

Previous works {5,6,7,8] have also considered supersymmetry breaking in compact- 

ified superstring theories. 

I work in the asymmetric orbifold formulation [4] of four-dimensional string the- 

ories, since this formulation is particularly intuitive and physically transparent. In 

this formalism, modular invariance is ensured by simple level-matching conditions, 

gauge groups are easily identified, the number of massless fermions readily deter- 

mined, and so on. I choose Z3 orbifolds [9], as they give rise to physically interesting 

gauge groups, like SUa and Es, although my results can be generalised readily to 

the case of arbitrary 2,. 

The paper is organised as follows. In section 2, I set up the formalism. A 

simple way of constructing 5 symmetric lattices is presented. In section 3, a new 
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mechanism for supersymmetry breaking is presented. This mechanism, which is 

based on the use of two Zs symmmetries, produces chiral models. In section 4, 

a formalism for calculating the one-loop partition functions is developed, and the 

Atkin-Lehner symmetry [lo], which may be responsible for the vanishing of the 

cosmological constant in the absence of supersymmetry, is diicussed. I present 

one partition function that corresponds to a tachyon-free model with the vanishing 

vacuum energy. The results are summarized in section 5. In the Appendix, the 

properties of theta functions with third-integer characteristics are discussed. 

2. Formalism 

A four-dimensional asymmetric orbifold model is fully defined by specifying: 

l an even self-dual (16+6,6)-dimensional lorentzian lattice Ill], 

l the action of a discrete lattice automorphism group on left-moving and right- 

moving string degrees of freedom, 

l discrete torsion [12]. 

There is a particularly simple way of constructing ’ even, self-dual lattices. Begin 

with a lower dimensional lattice, symmetric under the desired discrete group, and 

build up the full lattice by taking the direct sum of sublattices in a way that ensures 

self-duality and evenness. With Zs symmetry, natural building blocks are provided 

by the twodimensional SUs root lattice R, and its weight lattices W and W’, for 

the fundamental and conjugate fundamental representations, respectively. By the 

‘I am grateful to K.S. Ne.r& for bringing thin constmction to my attention. 
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weight lattice, I mean the root lattice shifted by the weight vector. I adopt the 

normaliiation corresponding to root vectors of (Iength)l = 2 and weight vectors 

of (length)* = $. These lattices sre symmetric under 2 rotations. The procedure 

described here allows lattice theta functions to be written in terms of the SUs lattice 

partition functions given in the Appendix. 

To illustrate this procedure, I construct two well known lattices. The (8,0)- 

dimensional Es root lattice (11 can be constructed by using the (SU3)’ decomposition 

of the adjoint representation of Ea: 

I?8 = RRRR + RWWW’ + WRW’W’ + WWRW + WW’WR 

+ RW’W’W + W’RWW + W’W’RW’ + W’WW’R. (1) 

Using the transformation properties of SUs lattice theta functions under modular 

transformations, given in the Appendix, one can check that the Eisenstein series 

corresponding to rs is modular invariant. Another useful example is the (2,2)- 

dimensional SU, root-weight lattice [4]: 

l?2,2=RR+WW+W’W’. PI 

It is easy to verify modular invariance in this case. Many other examples, such as 

the ES root-weight lattice, etc., can also be discussed. 

In the asymmetric orbifold formulation of four-dimensional string theories, the 

actions of a discrete symmetry group on left-moving and right-moving string excita- 

tions are considered separately. I assume that the discrete groups contain a number 

of Z3 factors, consisting of rotations and translations on the (16+6,6)-dimensional 

momentum lattice. I focus my attention on the asymmetric orbifolds obtained from 
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the lattice (Is)r(Is,s)s. The momentum vector is represented by: 

where PI denotes the component in the first I’s, 4 the component in the second 

Is, and (pi,&), i = 1,2,3, the components in three I’s,2 lattices. I use the Green- 

Schwarz [13] formulation for right-movingfermions, which is convenient for studying 

the problem of supersymmetry breaking. 

I note the physical interpretation of discrete torsion. Let Q and p be nontrivial 

elements of two different Zs groups. The discrete torsion c(o,p) = 1, efi, or e-Ti, 

defines the Q charge of the vacuum in the sector twisted by p. In order for this choice 

to be consistent with modular invariance, it must satisfy the conditions derived in 

ref.[l2]. 

3. Non-supersymmetric models 

The mechanism often used for supersymmetry breaking in string theories em- 

ploys 2s rotational symmetry of Minkowski space-time, or equivalently, the fermion 

number F conservation. A twist with the Zs symmetry operator (-l)F breaks su- 

persymmetry by eliminating the zero modes of Green-Schwarz fermions [S]. For 

Z3 symmetry, the analogous operator p leaves no fermionic ground state invariant 

under its action. The action of p on Green-Schwarz fermions is given by: 

Jos = ,2+, = diag (i, g, $, :,-a;-:,-$,-$), (3) 

where, to be specific, I choose the angular momentum operator 51 to generate 

rotations in the first Is,2 lattice. The same rotations must be performed on the 
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right-moving bosonic oscilators and the right-moving momenta: 

- 
B : (PI; P2;P1,~1;P2,52;P2,j4 -+ (P1; P2;Plrc 2”‘wo2,iw3s3,), (4) 

as required by world-sheet supersymmetry. The operator p can be supplemented 

with some extra 9 rotations on the right-movers and shifts on the momentum 

lattice (a shii must correspond to one-third of a lattice vector, as dictated by the 

Z3 symmetry). By checking all possibilities, it is possible to show that up to such 

generalisations, there is no other supersymmetry breaking Z3 operator satisfying 

the level matching conditions in the twisted sectors. 

The operator /3 is similar to (-l)F in another respect. A twist with (-l)F 

gives back the heterotic superstring in ten dimensions. Similarly, a twist with p 

alone gives a four-dimensional N = 4 supersymmetric model, with the gravitinos 

reemerging from the twisted sectors. This is the reason why, in order to break super- 

symmetry, the action of /3 must be accompanied by some shifts on the momentum 

lattice, and/or by rotations on the right-movers. In this process, particular care 

must be taken to avoid tachyons, but the analogy ends here. While it is possible to 

generate chiral theories in ten dimensions [14], by using (-l)p combined with some 

shifts, a similar procedure applied to p gives left-right symmetric models in four 

dimensions. The reason is that the eigenvalue i (or -f) Green-Schwarz fermions 

correspond to two helicity plus and two helicity minus states in four dimensions. 

The way to avoid this problem is to introduce an extra Za symmetry, which leaves 

invariant either one eigenvalue i eigenstate of the operator p, or else two eigenstates 

of the same helicity. The action of the operator or, which leaves invariant only one 
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eigenstate, is given by: 

&OS = a~~~(t’l+tJ*+fJ*) = &ag(O, a, i,-$,0,-f,-!, i) , (5) 

G : (PI; P2;Plrkp2,iJ2;m,iJ2) + (Pl;P2;Pl,e 
IrifJ,- Pl;Pz,C2~“Jt~;p3,C2n’i~.~), 

(6) 

The action of the operator or, which leaves invariant two eigenstates, is given by: 

Zrlcs = c2ti(fJa+fJa) = diag(-i,O,O, f, :,0,0,-g) , (7) 

G2 : (Pl;P2;p1,~1;h,~2;~,~3) -+ (P~;P2;pl,~l;hre2ri~Jz~;,,e2n’f’ls~2), (8) 

The Z3 symmetry generated by either one of these two operators, imposed in addi- 

tion to the Z3 symmetry generated by the operator p, results in a chiral spectrum 

of ma&less fermions. This is provided that its action, eqs.(S-8), is accompanied by 

shifts on the momentum lattice (and/ or by rotations on the right-movers), which 

is necessary in order to prevent the mirror fermions from reemerging in the twisted 

sectors. 

In the rest of this section, I consider (Z3)2 groups, consisting of nine elements of 

the form a’pj, i, j = 0,1,2. These models contain the untwisted sector and eight 

twisted sectors. As explained before, a and p are supplemented with some shifts and 

rotations. Additional rotations increase the number of llxed points, and produce 

models with too many massless generations, so I restrict myself to pure shifts. In 

this case, tachyons are absent provided that the shift vector, supplementing the 

action of p, has (length)’ 2 2. 

For the purpose of illustration, I construct a simple (ZZ)~ model, with the op- 

erators a = as, eqs.(7,8), and /3, eqs.(3,4), modified to a’ and p’. These operators 
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act the same on Green-Schwarz fermions, whereas: 

2 : (P1;4;p1,~1;Pa,h;m,~J) ---) (PGP2iPl +w,iQ;P2,~ 
kip,- fi; p& e2n’fJ*b) , 

(9) 

p: (P~;P,;pl,~l;h,h;h,~) + (P~+W~;P2+W2;p1,e21’fJ1jI;p2,Fzz;p3+w3,h). 

(10) 

WI, W2 and rui denote the weight vectors; Wi (W ) 2 in one of the SUs subplanes of 

the first (second) Ps lattice, and tui (ws) in the first (third) Pr,r lattice. 

The spectrum of the untwisted sector does not depend on the choice of discrete 

torsion, so I discuss it first. The massless bosons are: graviton, dilaton, (Es)2(SU3)6 

gauge bosons, and scalars in the representations 271Wl and 272W2, where I adopt 

a self-explanatory notation for the Es and SUs representations. There are two 

generations of chiral fermions: 2. 2r1Wl and 2. 272W2. 

The massless particle content of eight twisted sectors depends on the choice of 

discrete torsion, or in other words, on the vacuum charge ~(a, /3) G 6. Below, I list 

massless fermions (F) and masslees scalars (S) from the twisted sectors. 

From the sectors twisted by Q and or: 

c=l F: (~1 + w;)(u)2 + w;)w; S: nothing 

r=efi F: WI(W2 + w;)w3 s: 2 * WI(W2 + w;)w; 

f = e-fi F: wi(w2 + w;)ws s: 2. WI(W2 + w$)ws 
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From the sectors twisted by p and f12: 

c=l F: 2. WIWSWS S: WIWS(WI + wi + ~2 + w;), 

271W;, 272Wi 

ccc+ F: WiW;w; s: WlW2(Wl+ Wi + W;), 

271W;, 272Wi 

e = e-+ F: W;W;w; s: W,Wz(w, + w; + w;), 

271W;, 272Wi 

From the sectors twisted by 02/3 and apr: 

c=l F: 271W;y 272Wi, WiW;ws S: WiW;(Wi + W2 + W;) 

e=e+ F: WiW;(WU; + ~2 + w;) S: WiW;(UJ1+ W;) 

~ = pf’ F: WiW;(W, + w;) S: 271W;, 272Wi, WiW;w, 

From the sectors twisted by crp and a2f12: 

c=l F: 271W;, 272Wi, WiW,‘w, S: WiW;(W, + W2 + W;) 

c = cyi F: WiW;(Wi + w;) S: 271W;, 272Wi, WiW;W, 

c = e-fi F: WiW;(Wl+ ~2 + w;) S: WiW;(Wf + W;) 

This list illustrates the rich massless particle spectrum of the models under 

consideration. It is easy to check that three models, corresponding to different 

choices of the discrete torsion, are free of anomalies, as expected from the modular 

invariance 1151. The Higgs sectors contain many scalars, whose vacuum expectation 

values may reduce the rank of the gauge group. 

The (Zs)2 models discussed above can be generalised by considering further 2s 

symmetries. In future work [16], I intend to study, in greater detail, the phenomeno- 

logical aspects of 2, asymmetric orbifold models. 
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4. Partition functions and Atkin-Lehner symmetry 

In non-supersymmetric string theories one expects that string loop corrections 

give rise to a vacuum energy of order (frG)-2, which is approximately hundred 

twenty orders of magnitute larger than the experimental bounds on the cosmological 

con.stant. 

At least at one string loop level, the cosmological constant problem can be 

avoided by introducing a supersymmetry breaking scale MS, which is less than the 

Planck scale Mp, and ensuring that the numbers of massless fermionic and bosonic 

string excitations are equal [8]. In such a situation, the cosmological constant is 

suppressed by the factor czp(-e). Th e supersymmetry breaking scale is related 

here to the radii of compact dimensions. Such a mechanism is not suitable for asym- 

metric orbifolds, whose radii are fixed by the requirement of modular invariance. 

Recently, Moore [lo] has proposed a new way of ensuring vanishing vacuum 

energy in non-supersymmetric string theories. His mechanism employs so-called 

Atkin-Lehner symmetry. I explain how this works in the Z3 models under consid- 

eration. 

At one loop, the four-dimensional string vacuum energy is given by: 

E... = / 
6r 

3 (Imr)3 P(cl, PI 

where P(q,ij) is the one loop partition function, depending on the modular param- 

eter q = eztir for the torus, and 3 is the fundamental domain for the modular 

group. The modular group is generated by the transformations S : r -+ -l/r and 

T : r + r + 1. It can be decomposed as Ic(3) u Fs(3)S u Ps(3)ST u I’s(3).%“-i, 

where the subgroup Ps(3) is generated by the transformations T and ST3S. Corre- 
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spondingly, the partition function of a Zs model can be decomposed as the sum of a 

I’s(3) form Z(r) and its transforms with the elements S, ST and ST-’ of the right 

transversal. We will call Z(r) the generating function for the partition function. 

By using the cceet decomposition, one can rewrite the vacuum energy, eq.(ll), as 

the integral of (Imr)-3Z(r) over the fundamental domain of the subgroup re(3). It 

is not difficult to prove that this integral vanishes, provided that Z(r) is eigenvalue 

-1 eigenfunction of the Atkin-Lehner operator: 

AL : Z(r) -+ Z’(r) = 3 Ir I2 2(-l/37) 02) 

The explanation given above is rather technical and refers to the properties of the 

partition function; a deeper physical understanding of the Atkin-Lehner symmetry 

is still missing. The only way known so far to determine whether an orbifold model 

has a vanishing vacuum energy is to calculate its partition function, and then to 

check how it transforms under Atkin-Lehner symmetry. Conversely, it is possible 

to construct an Atkin-Lehner symmetric partition function, and then identify the 

models which it corresponds to. 

Partition functions for Zs models can be expressed in terms of four theta func- 

tions with thud-integer characteristics ;r their definitions and properties are listed 

in the Appendix. In order to examine transformation properties of a generating 

function under Atkii-Lehner symmetry, it helps to express theta functions in terms 

of the functions 6, p and n, which are defined in the Appendix. 

As an example I calculate the generating function for the models considered in 

the previous section. The generating function can be written as the sum of two 

‘See, for example, ref.[l71. 
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ro(3) modular forms, 2, and 2,: 

Zl = t {(P,l) + (P’,l)>, (13) 

z* = ;cuQJ) + (NW + (QBZ,P) + (a’,BZ) + (a*p*,P*) + (a*B,p*)} 

+ ;c* hP’) + WZ,P2) + (4,P2) + (a’,P) + (a’P,P) + (a*p*,p)}, (14) 

where (a,P) denotes contribution from the sector twisted by a in the t direction 

and p in the u direction. The factor k takes into account normalization of the 

projection operators. I obtain: 

21 = $ 3’/*r]-*‘RS(RJ - W’)* (RiZ + ZWm(Rii - WiV) h-9 

= ;p3~-g6-g(lpr)-16-‘I* +z165r]-‘1*)(1pr)-‘6-‘l* - 16$‘/*)-,(15) 

Z, = ,. g 3g/*9-*‘R3Ws(R3 - W”) $4 

= r 2 6gp3q-23 ~6-3, (16) 

where the factor r = 2 or - 1, depending on the choice of the discrete torsion 

6 = 1 or e*%‘, respectively. The formulae listed in the Appendix were used to 

derive these results. It can be shown that the generating functions Z = Z, + Z* of 

these models are not Atkin-Lehner eigenfunctions. 

In general, the generating function Z(r) has the form: 

Z(4 = c 44lwz). 
bW1 

(17) 

The individual contributions, p from the left movers and v from the right movers, 

are ro(3) modular forms of weights wt@) = wt(v) = -1, possibly with multiplier 

systems, such that the phases cancel between left and right movers. In eq.( 17)) the 
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sum includes contributions from a number of twisted sectors; these are chosen so 

that Z(r), plus its coset tramform.q fill out all nonvanishing contributions to the 

partition function. In the orbifold models, with the twist operators restricted to Zs 

shifts and rotations, the forms p and v can be written as linear combinations of the 

terms proportional to pz69’; the integer powers z, y and z satisfy 42 + y + z = -2, 

as dictated by wt(p) = wt(v) = -1, and z 2 0. Restriction to shifts and rotations 

imposes additional constraints on the powers z, y and z, since left and right moving 

mass levels are bounded from below in all twisted sectors: 

cc: 2+%+22-l, V: ~+$+f$-;. (1’3) 

The eigenvalue -1 orbifold-like eigenfunctions of the Atkin-Lehner operator are 

found ss follows. If an eigenfunction contains a term proportional to p=6Yq’, it must 

also contain its Atkin-Lehner transform, proportional to p’6’q”. This condition 

leads to two more inequalities, obtained from ineqs.(lE) by interchanging y with z. 

After taking all of these constraints into account, what remains are the contributions 

of the right movers V, restricted to (yy, z,) = (I, -3), (0, -2) ,(-1, -1) , (-2,0), 

(-3,l) or (-3,-3). The requirement of T’s(3) modular invariance yields the fol- 

lowing conditions on the respective left-movers contributions p (see eq.(17) and 

Appendi): 

y,,=yumod12, x,=z,modlZ. 09) 

Eq.(lS), together with the previously mentioned constraints, allows construction of 

all orbifold-lie, eigenvalue -1, Atkin-Lehner eigenfunctions. They are: 

a = ,59,,-” r16-s - 81 f=‘-” 6rl-3 (20) 

b = p36-3,,-” 116-5 - 3 p=,,-36-1’ 611-3 
(21) 
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c = 6r~-~6q-= - 9 rj6-= ~6-3 

- - 
d = ,,-* ,,-1 - 3 6-1 6-l. 

(22) 

(23) 

The functions b, c and d, eqs.(21,22,23), correspond to tachyonic models. This 

leaves us with only one generating function, Z(r) proportional to a(r) of eq.(ZO), 

which may correspond to a tachyon-free non-supersymmetric model with a vanishing 

one-loop vacuum energy. 

I performed an extensive search for a (Zs)” orbifold model, with the partition 

function generated by the function a of eq.(ZO). The result is rather disappointing. 

Although I am not able to prove it rigorously, experimentation with models suggests 

that there is no model with such a partition function. It would be very important 

to understand if there is some basic obstruction preventing the function a from 

generating a partition function of a four-dimensional string theory. 

5. Conclusions 

In this paper I studied four-dimensional heterotic superstring theories in the 

asymmetric orbifold formulation. A mechanism for supersymmetry breaking, that 

gives rise to chiral spectrum of massless fermionic string excitations, was presented. 

Several Zs models were considered. Typically, these models have very rich massless 

spectra, and phenomenologically interesting Higgs structures. In the future work 

[16] I intend to study some phenomenological aspects of the asymmetric orbifold 

models. 

A formalism for calculating one-loop partition functions in Z3 models war de- 

veloped. This formalism can be applied in calculating one-loop string amplitudes. I 
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constructed one partition function, that may correspond to a non-supersymmetric, 

tachyon-free orbifold model, with the one-loop vacuum energy vanishllg due to 

Atkin-Lehner symmetry. I am not able, though, to construct the corresponding 

model. This means that so far, there are no known examplee of four-dimensional 

Atkin-Lehner models in existence.s 

Even if there is some basic reason why Atkin-Lehner symmetry does not work in 

four dimensions, the idea - that some string symmetries may be responsible for van- 

ishing of the cosmological constant in the present day, non-supersymmetric Universe 

- is certainly worth pursuing. Such a symmetry would have to manifest itself in the 

effective (zero string slope) field-theoretical Lagrangean in the form of some non- 

renormalizable terms, whose vacuum expectation values cancel the vacuum energy. 

From thii point of view, cancellation of the cosmological constant would be quite 

similar to the cancellation of axial anomalies by Wess-Zumino terms in situations 

[19] when some of the fermions involved in the anomaly cancellation are rendered 

infinitely heavy.’ Perhaps quadratically divergent corrections to Higgs masses could 

also be cancelled by string symmetries. It may be that non-supersymmetric string 

theories provide a completely new solution to the naturalness problem. 

‘G. Moon [18] has agreed that the four-diienaional (&)’ model of ref.[lO] is not modular invariant. 

‘I am grateful to M. Mangano for a discussion on this point. 
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Appendix. Theta functions 

Theta functions with third-integer characteristics are defined ax 

*i [I 8 = fm @++j)'+jir(n+j) 

= eftiqfi fit1 - qn)(l - q-te-fi)(l - qn-fcFi), 
“=l 

,5 [I t = EC= $*r(n+ j)‘- jir(n+ f) 
= e-Aiqh~(1-q”)(l-q9”-feri)(l-qn-ie-~i), 

n=l 

9; [I = 1 -Em p(n+ j)‘+ir(n+ j) 
= cfiqft fi(1- q”)(l - q”-t)(l~- q”-t), 

n=1 

si [I 5 = .ga eirr(n+j)‘+jir(n+j) 

= 

n=l 

where q = ezdr. They satisfy the following cubic identities: 

@[f] = 6=[;] - eqg , 
B’[i] = eiip[t] f e-ji@[i] . 

t-41) 

WI 

643) 

(-44) 

(~45) 

These identities can be derived by using standard techniques (201 of the theory of 

modular forms. 

I define the functions: 

9 = &fi(l-cl”), 
f&=1 

(A71 
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6 = 9 i = hq(3r), [I 
p = 8[i]{&=[g + JW[f]). 

648) 

W) 

Under the I’s(3) modular transformations, these functions transform BS modular 

forms of weights wt(n) = wt(6) = i, wt(p) = 2, with the following multiplier 

systems [ZO]: 

+I 9: & 6:+ p:+, bW 

v(ST=S) tj: { 6:$ p:;. (All) 

From eqs.(A5,A6) it follows that the functions 7, 6 and p satisfy: 

p= = 6l* + 27r]‘* 0 12) 

Atkin-Lehner transformation r * -1/3r acts in the following way on a modular 

form f of weight wt(f) = k: 

AL : f(r) -+ f’(r) = (J;i;r)-*f(-l/37) (*13) 

It is not difficult to show that: 

0’ -+ -364, 

6’ -+ -3rj’, 

P -+ -P, 

~6 --t 76. 

(-414) 

(*x5) 

PW 

(-417) 

For completeness, I express the theta functions of eqs.(Al-A4) in terms of the 
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functions n, 6 and p: 

5 (p6-’ - 6=), 

]q]q] = &ieii94. 

b4w 

W-‘) 

6420) 

(-421) 

In addition to the c+cillators contributions, one-loop partition functions contain 

lattice theta functions. A theorem by Schoeneberg [Zl] allows the lattice theta 

functions to be computed simply. SUs root and weight lattices correspond to the 

partition functions: 

w = W’ = 
6= 

7%’ 
t.423) 

SUs lattice theta functions transform in the following way under the modular trans- 

formations: 

T: R+R; w-tc~iw, b424) 

s: R--t-irj;(R + ZW); W -+-iz&(R - W). (A25) 



-19 FERMILAB-P&-87/157-T 

References 

[l] D.J. Gross, J.A. Harvey, E. Martinet and R. Rohm, Phys. Rev. Lett. 54 

(1985) 502; Nucl. Phys. B256 (1985) 253, B267 (1986) 75 

[Z] H. Kawai, D.C. Lewellen and S.-H.H. Tye, Phys. Rev. Lett. 57 (1986) 1832; 

Nucl. Phys. B288 (1987) 1; Cornell preprint CLNS 87/69 (1987) 

I. Antoniadii, C. Bachas and C. Kounnas, Nucl. Phys. B289 (1987) 87; 

I. Antoniadis and C. Bachas, CERN preprint TH.4767/87 (1987) 

[3] W. Lerche, D. Liist and A.N. S c e e h 11 k ens, Nucl. Phys. B287 (1987) 477 

[4] K.S. Narain, M.H. Sarmadi and C. Vafa, Nucl. Phys. B288 (1987) 551 

[5] R. Rohm, Nucl. Phys. B237 (1984) 553 

[6] S. Ferrara, C. Kounnas and M. Porrati, U.C. Berkeley preprint 

UCB/PTH/87/25 (1987); 

N.C. Tsamis, CERN preprint TH.4777187 (1987) 

[7] V.P. Nair, A. Shapere, A. Strominger and F. Wilczek, Nucl. Phys. B287 (1987) 

402; 

P. Ginsparg and C. Vafa, Nucl. Phys. B289 (1987) 414 

[E] H. Itoyama and T.R. Taylor, Phys. Lett. 186B (1987) 129 

[9] L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1985) 678, 

B274 (1986) 285; 

L.E. lbsfiez, H-P. Nilles and F. Quevedo, Phys. Lett. 187B (1987) 25 

[lo] G. Moore, Nucl. Phys. B293 (1987) 139 



-2O- FERMILAB-P&-87/157-T 

Ill] KS. Narain, Phys. Lett. 169B (1986) 41; 

K.S. Narain, M.H. Sarmadi and E. Witten, Nucl. Phys. B279 (1987) 369 

[12] C. Vafa, Nucl. Phys. B273 (1986) 592 

1131 M.B. Green and J.H. Schwarz, Phys. Lett. 109B (1982) 444 

[14] L. Dixon and J. Harvey, Nucl. Phys. B274 (1986) 93; 

L. Alvarez-Gaume, P. Ginsparg, G. Moore and C. Vafa, Phys. Lett 171B (1986) 

155 

[15] A.N. Schellekens and N. Warner, Nucl. Phys. B287 (1987) 317 

[16] T.R. Taylor, in preparation. 

[17] K. Ito, Phys. Lett. 187B (1987) 33 

[18] G. Moore, private communication (1987) 

[19] E. D’Hoker and E. Farhi, Nucl. Phys. B248 (1984) 59, 77 

[ZO] R. Rankin, Modular Forma and Functiona, Cambridge University Press, 1977 

[21] B. Schoeneberg, Elliptic Modular Functions, Springer, 1974 


